STUDY MODULE DESCRIPTION FORM					
Name of the module/subject Basics of drive systems design		ode 010611251010648481			
Field of study Mechanical Engineering	Profile of study (general academic, practical) (brak)	Year /Semester			
		3/5			
Elective path/specialty Heavy Machinery	Subject offered in: Polish	Course (compulsory, elective) obligatory			
	1 0	Obligatory			
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies	full-time				
No. of hours		No. of credits			
Lecture: 2 Classes: 1 Laboratory: -	Project/seminars: 2	6			
Status of the course in the study program (Basic, major, other)	(university-wide, from another field	l)			
(brak)	(bı	rak)			
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		6 100%			
Technical sciences		6 100%			
Responsible for subject / lecturer:	Responsible for subject	/ lecturer:			
dr hab. inż. Ireneusz Malujda, prof. PP	dr inż. Krzysztof Talaśka				
email: ireneusz.malujda@put.poznan.pl	email: krzysztof.talaska@put.poznan.pl				
tel. 61 665-2244	tel. 61 665-2246				
Transport Engineering	Transport Engineering				

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Student has knowledge of physics (statics, kinematics and dynamics), mathematics, Basic of machines design I after completing the program of study
2	Skills	Student has the problem-solving skills of the basics of machine design based on their knowledge, ability to obtain the information from identified sources
3	Social competencies	Student understands the need to broaden their competence, willingness to work together as a team

ul. Piotrowo 3, 60-965 Poznań

Assumptions and objectives of the course:

- 1. Provide students with knowledge of the basics of machine design.
- 2. Develop students' skills:

ul. Piotrowo 3, 60-965 Poznań

- calculation and design of components and assemblies of machines,
- making and reading the technical documentation on the basis of the knowledge from the Engineering Drawing course
- practical use of the knowledge gained from the course: Mechanics, Strength of materials, Theory of machines, Materials, Basics of Machines Design I.
- 3. Development of students' teamwork skills.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has basic knowledge of the basics of machine construction and the theory of machines and mechanisms, including mechanical vibrations [M1_W05]
- 2. Has basic knowledge of standardized principles of construction record and engineering graphics [M1_W06]
- 3. Has basic knowledge in the field of strength of materials, including the basis of the theory of elasticity and plasticity, performance hypotheses, methods for calculating beams, membranes, shafts, connections and other simple structural elements, as well as methods for testing the strength of materials and the state of strain and stress in mechanical constructions [M1_W11]

Skills:

Time (working

- Faculty of Transport Engineering
- 1. Is able to plan and carry out the process of constructing uncomplicated machine sets or machines and to formulate requirements for electronic components and automatic control systems for industry professionals in mechatronic systems [M1_U14]
- 2. Student is able to perform basic functional and strength calculations of machine elements such as tension, cogged, friction gears, bearings, rolling and sliding gears, couplings, brakes [M1_U15]
- 3. He can prepare technical documentation descriptively drawing engineering tasks [M1_U19]

Social competencies:

- 1. Is ready to critically evaluate your knowledge and content you receive [M1_K01]
- 2. Is ready to recognize the importance of knowledge in solving cognitive and practical problems and to consult experts in the event of difficulties in solving the problem [M1_K02]

Assessment methods of study outcomes

Forming assessment:

- a) in a scope of the excercise classes: assessment of the answers for the questions concerning the knowledge which was presented during previous classes
- a) in a scope of lectures: assessment of the answers for the questions concerning the knowledge which was presented during previous lectures

Summarizing assessment:

- a) in a scope of the exercise classes: written exam.
- b) in a scope of lectures: written exam

Course description

The structure of the machine drive system, the functions of transmission, clutch, the basic parameters of the drive, drive types, kinematic diagrams. Split couplings, design review and applications. Starting layout drive with clutch. Clutch: fixed, controlled, sensitive, overload. Calculation of couplings and the rules for the selection. The general division of drives, design review, the basic parameters. Rules for selection of gear ratios and the calculation of torques. Gears: classification, the outline of the teeth. Helical gear: geometry, kinematics. wheels, interdental force, the base of the structure. Bevel gear, the geometric parameters of the wheels, interdental force. State of stress in the gear wheel teeth. Design calculations of spur gear. Worm gears, geometry, kinematics. Planetary Gear, examples of construction. General characteristics of belt drives, power and tension in the belt cords, power and gear efficiency. The calculation and selection of the design characteristics of belt drives. Chain drives. Power screw assemblies.

Basic bibliography:

- 1. J. Żółtowski, Podstawy Konstrukcji Maszyn, Oficyna Wydawnicza Politechniki Warszawskiej, 2002.
- 2. R. Knosala, A. Gwiazda, A. Baier, P. Gendarz, Podstawy Konstrukcji Maszyn, WNT, Warszawa 2000.
- 3. A. Dziurski, L. Kania, A. Kasprzycki, E. Mazanek, Przykłady obliczeń z Podstawy Konstrukcji Maszyn, Tom 1 i 2, WNT, Warszawa 2005.

Additional bibliography:

- 1. Dietrich M.; Podstawy konstrukcji maszyn, Wydawnictwo Naukowo Techniczne 1995.
- 2. Niezgodziński M. E., Niezgodziński T.; Wzory, wykresy i tablice wytrzymałościowe, Wydawnictwo Naukowo ? Techniczne, 1996.
- 3. Sempruch J., Piątkowski T.; Podstawy konstrukcji maszyn z CAD, Piła, Państwowa Wyższa Szkołą zawodowa w Pile, 2006

Result of average student's workload

Activity	hours)
1. Lectures	30
2. Consultations	2
3. Preparation to pass the exam	10
4. Participation in the exam	2
5. Participation in the exercise classes	15
6. Preparation to the exercise classes	8
7. Preparation to pass the exercise classes	10
8. Participation in the exercise classes exam	2
9. Participation in the project activities	30
10. Preparation of the project	25
11. Consultation project	5
12. Preparation to pass the project exercises	15
13. Participation in project passing	2

http://www.put.poznan.pl/

Student's workload				
Source of workload	hours	ECTS		
Total workload	158	6		
Contact hours	90	4		
Practical activities	77	3		